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Abstract

Monitor objects are used extensively for thread-safety and synchronization in shared memory parallel
programs. They provide ease of use, and enable straightforward correctness analysis. However, they
inhibit parallelism by enforcing serial executions of critical sections, and thus the performance of parallel
programs with monitors scales poorly with number of processes. Their current design and implementation
is also ill-suited for thread synchronization across multiple thread-safe objects. We present ActiveMonitor
� a framework that allows multi-object synchronization without global locks, and improves parallelism
by exploiting asynchronous execution of critical sections. We evaluate the performance of Java based
implementation of ActiveMonitor on micro-benchmarks involving light and heavy critical sections, as well
as on single-source-shortest-path problem in directed graphs. Our results show that on most of these
problems, ActiveMonitor based programs outperform programs implemented using Java's reentrant-lock
and condition constructs.

1 Introduction

Most, if not all, programmers follow a standard recipe to implement shared memory parallel programs: they
identify the critical sections in the serial implementation of the program, and make them thread-safe in the
style of monitors [22]. Monitors provide dual abstractions: mutual exclusion and synchronization between
threads. Their simplicity and elegance of use, and ready availability of mutexes/locks are two key factors
behind such a wide adoption of this style. By enforcing serialized executions of critical sections, mutexes
trivially guarantee the safety of data. Under high contention scenarios, however, such serialized executions
become obvious performance bottleneck. In addition, mutexes force memory fencing due to which latency
hiding techniques such as caching, pre-fetching, and operation re-ordering cannot be exploited to their
fullest. As a combined e�ect of all these factors, programs in traditional monitor-style fare poorly in terms
of throughput and scalability on multi-core CPUs. Mutex-based monitor implementations have another
limitation: method invocations across multiple monitors cannot be combined easily. For example, given two
thread-safe blocking queues, consider the problem of dequeueing an item from either of them. There is no
easy solution to the problem of using mutex based synchronous monitors [19].

We present ActiveMonitor, a framework that provides signi�cant programming ease in writing thread-
safe programs, allows multi-object synchronization, as well as improves the runtime performance of these
programs by exploiting asynchronous delegated executions on modern multi-core hardware. Extending our
previous work AutoSynch [24], which provides waituntil keyword for automatic signaling and thread synchro-
nization, ActiveMonitor framework enables asynchronous executions of critical sections, as well as method
composition across monitor objects through simple constructs. Recall that monitors were envisioned in 1970's
when saving processor cycles of the single-core CPUs was a primary programming concern. In contrast, not
only multi-core processors are now ubiquitous, but they are also signi�cantly cheaper and faster. In order to
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exploit the multi-core resources, we allow a monitor object to exist as a thread � hence it becomes an active
artifact of the program. With this change, method invocations on this monitor object can be delegated [36].
In addition, we allow the monitor thread to execute critical sections asynchronously, so that calling threads
can return to their local work without waiting for their completion.

Using ActiveMonitor involves the following steps (Fig. 1 shows the framework overview):

(a) The programmer writes a monitor based parallel program using the ActiveMonitor keywords. These key-
words are: monitor, waituntil, synchronous, asynchronous, and notthreadsafe. He/she can use two additional
operators OR and AND for compositionality across multiple monitor objects. ActiveMonitor automat-
ically manages the use use of locks, and their acquisition/release so that the user is not required to
explicitly program them. The user is also free from the responsibility of checking the predicate condi-
tion(s) and signaling appropriate threads. The framework observes the values of predicate conditions at
runtime, and signals the appropriate threads automatically.

(b) He/she then runs the ActiveMonitor pre-processor to generate the program's equivalent Java code. The
pre-processor injects code snippets to provide the corresponding functionality of framework keywords.
The pre-processor also links invocations of ActiveMonitor runtime library API in the generated code.

(c) The program is then compiled as a standard Java program, and the binaries bene�t from asynchronous
executions of critical sections, and automatic signaling. If needed, the user can easily disable asyn-
chronous executions at runtime by simply passing a �ag.

ActiveMonitor enables operations that are not possible with traditional synchronous monitors. Solving
the problem of removing an element from either of n blocking queues, where n ≥ 2, is a challenging task
with traditional monitors [19]. In ActiveMonitor it is just a matter of using the framework's OR construct: x
= Q1.deqeue() OR Q2.dequeue() .... Similarly, the AND construct of the framework allows the programmer to ag-
gregate results from multiple operations across di�erent monitors.

ActiveMonitor
Java Library

ActiveMonitor 
Preprocessor

ActiveMonitor 
Code

Java Code Standard Java 
Compiler

Java 
Bytecode 

Figure 1: ActiveMonitor framework

Our design and implementation integrates seam-
lessly with current constructs provided by most
programming languages, and can thus bene�t ex-
isting programs with only a handful of syntactic
changes. The results of our experimental evalu-
ation (using Java1) on �ve multi-threading prob-
lems show that ActiveMonitor outperforms, by a
factor of two or more in some cases, traditional
monitor based programs implemented using Java's
ReentrantLock [30], and delegation technique [36] on
most of these problems. In our current implemen-
tation of ActiveMonitor, use of thread dependent
variables and functions is restricted. Note that this only disables the asynchronous executions provided by
ActiveMonitor and the framework can still be used for such problems. We discuss these issues in � 9.

2 ActiveMonitor: Concepts & Design

In ActiveMonitor framework, each method of a monitor is a critical section � unless otherwise speci�ed
(using notthreadsafe keyword described shortly ahead). We use the term worker to denote an application
thread/process. A monitor object can be instantiated as a thread/process based on the availability of
system resources. This thread is called a server, and invocation of critical sections of monitor by workers
are delegated to it. Delegation [36] is a technique in which critical sections of a monitor are not executed
directly by workers invoking the method, but are processed by the server thread on behalf of workers. The
workers announce their execution requests � in the form of tasks � to the server by adding the requests

1our technique is not limited to Java, and applies to any other modern programming language.
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(task objects) to a shared storage that is owned by the monitor. Combining [10,15] is a version of delegation
in which the role of server is assumed by the worker that succeeds in acquiring the lock to the critical
section. This thread becomes the combiner, and in addition to its own request, serves requests announced
by other threads for a period of time before releasing the lock and allowing some other thread to become
the combiner. Throughout this paper, we use the term server in both delegation and combining contexts. A
critical section is asynchronous (or non-blocking) if the worker can return to executing its own local program
from the critical section before its completion. Otherwise the critical section is synchronous (or blocking).

ActiveMonitor provides the following constructs for writing monitor based programs:

1. monitor: keyword that declares a class as a monitor, and frees the user from explicit lock instantiations,
and their acquisition/release to make the critical sections thread-safe.

2. waituntil: a statement for conditional waits and noti�cations. The statement requires a boolean predi-
cate as an argument.

3. synchronous: keyword used in declaration of monitor methods. Such methods are made thread-safe but
not delegated to the server (monitor thread) for execution.

4. asynchronous: keyword used in declaration of monitor methods. Such methods are delegated to the
server (monitor thread) , and the worker thread returns to its own local execution before completing
the method. If the worker requires the result of the computation, it receives a future [12] instance
which can be evaluated � a blocking call if the result is not yet available � to fetch the result.

5. notthreadsafe: this keyword in a method signature tells the framework to not generate thread-safe code
for this method. incompatible with the previous two keywords: waituntil and asynchronous.

6. OR/AND: operators for logical composition of monitor methods. If a result is required from either of
these operator calls, then the framework stipulates that all the operand method calls have the same
return type. The order of operations is de�ned based on the evaluation of the pre-conditions (of
operand monitor methods) at runtime.

1 monitor class BoundedQueue<T> {
2 T[] items;
3 int putPtr, takePtr, count, size;
4 BoundedQueue(int size) {
5 this.size = size;
6 items = new Object[size];
7 }
8 aysnchronous void put(T item) {
9 waituntil(count < size);

10 items [putPtr++] = item;
11 putPtr = putPtr % size;
12 ++count;
13 }
14 T take() {
15 waituntil(count > 0);
16 T x = (T)(items [takePtr++]);
17 takePtr = takePtr % size;
18 --count;
19 return x;
20 }
21 }

Figure 2: Bounded-Queue with ActiveMonitor

Defaults: ActiveMonitor makes all monitor methods thread-
safe by default. Each method that returns void and updates
monitor state is asynchronous by default unless otherwise de-
clared. Each method that returns a type value (and not a void)
is made synchronous unless explicitly declared asynchronous by
the user. Each read-only method � determined by static anal-
ysis of the program in the pre-processing/compilation phase �
is also made synchronous irrespective of its return type. By do-
ing so, the framework is able to use read-locks for such methods
to exploit the inherent read parallelism in the program. The
bounded queue implementation in Fig. 2 shows the actual us-
age of monitor, and asynchronous keywords, as well as the waituntil
statement. Note that take() method will be made synchronous

by the framework as it returns a value and is not explicitly de-
clared asynchronous. Appendix A compares this program with a
conventional implementation using Java's synchronized keyword.
As shown in the design overview of Fig. 1, the framework has
two main components: a pre-processor and a runtime Java li-
brary. The pre-processor translates ActiveMonitor code into
Java code. In addition, it also identi�es the critical sections
that are eligible for asynchronous execution. For each such
method (critical section), the pre-processor generates its equivalent task. It then replaces invocation of these
methods (by application threads on monitor object) by submission of tasks to the server of the monitor. The
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runtime library has two sub-components: condition manager and task executer. The condition manager is
responsible for observing the state of the monitor object for conditional waits and signaling an appropriate
thread whenever its precondition becomes true. The task executer component manages the submission and
completion of monitor tasks and also handles their asynchronous executions.

Our pre-processor uses a set of parsing rules that identify the ActiveMonitor keywords, and is an extension
of the pre-processor in our previous work AutoSynch [24]. We brie�y discuss its steps, and refer the reader
to [24] for details. For a source class that is declared monitor, the pre-processor ensures that each method
of the class is protected using the re-entrant lock by inserting lock acquisition and release statements at the
beginning and end of method code. It then parses the method code for waituntil statements, and for each such
statement it creates a new condition in the monitor class. For every condition, the noti�cation criteria is the
boolean predicate provided as the argument to its corresponding waituntil statement. Then it analyzes the
method to decide whether or not it should be delegated. If the method is declared asynchronous or does not
returns a value and updates the shared data, the pre-processor generates an equivalent task for delegation.
We discuss monitor tasks, their generation and compositionality in the next section.

3 Monitor Tasks

In ActiveMonitor, a monitor task is de�ned as follows.

De�nition 1. Monitor Task: A monitor task t consists of a boolean predicate P and a set of statements
S. At runtime, if the precondition de�ned by P is true then t is `executable' and statements in S can be
executed to complete t. Otherwise, t is `unexecutable'.

For a task t, its set of statements S can be empty. The pre-condition P � passed as an argument to
waituntil statement � can either be absent altogether or may not appear as the �rst statement in the monitor
method. When a monitor method has no precondition, the pre-processor creates a task with its precondition
as tautology, indicating that the task can be executed at any time. If a monitor method does not start with
a waituntil statement but has some such statement in between, then the precondition of the �rst derived task
is a tautology. Consider the put method (lines 8 − 13) of the bounded-bu�er program of Fig. 2. For this
monitor method, the equivalent monitor task t is de�ned by the code of lines 9− 12. For t, the precondition
P is (count < bu�er_size); and it checks if the bu�er has any space to insert the item. If this condition is
false, the waituntil construct ensures that any thread trying to complete this task has to wait until the bu�er
has some space to insert the items. Lines 10 and 11 together form the set of statements S. The method
is explicitly declared asynchronous, so the generated task is submitted for an asynchronous execution to the
monitor thread.

3.1 Asynchronous Execution of Tasks

After an equivalent task t for a method m has been generated, all the invocations of m by workers are
executed with combining technique [10,15]. We use futures [12] for asynchronous (non-blocking) executions
of critical sections. For each asynchronous method call the pre-processing phase injects submission of a task
to the server (monitor thread) . A future reference is returned to the worker as a pointer to the computation.
Whenever the server �nishes the execution of a task, it updates its corresponding future reference with
the result of the computation. If the worker needs the result of the computation it evaluates the future.
Evaluation of a future is a blocking method: if the computation has not �nished then the caller must
wait until its completion. Note that unlike the schemes of [10, 15, 36], neither the server nor the worker
threads perform busy-wait/spinning in ActiveMonitor. Thus, we do not waste any processing cycles and
yield the CPU when there are no tasks to execute. Hence, ActiveMonitor provides a much more practical
implementation for delegated executions.

To guarantee program order, ActiveMonitor framework stipulates that each worker can only submit one
asynchronous task at a time. The task executor sub-component of the runtime library handles this by storing
a map of ids of worker threads and their corresponding task submissions. Whenever a worker tries to submit
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an asynchronous task, it �rst checks the map to verify if there is some previous asynchronous task stored
against its id that is not yet �nished. The worker is forced to wait � by evaluating the future � for the
completion of that task before being allowed to submit the new task. If the programmer understands the
implications of out-of-program-order asynchronous executions, and wishes to exploit them then he/she can
relax the program order execution by passing an argument to the runtime library. This change usually results
in higher program throughputs. Appendix B discusses this topic in more detail.

4 Runtime Library

The runtime library of ActiveMonitor provides two key functionalities: (a) automatic signaling of threads
under conditional waiting, and (b) delegation and asynchronous executions of critical sections. We extend
our previous work AutoSynch [24] to enable functionality (a) for task based asynchronous executions and for
multi-object synchronization through OR/AND operators. We summarize the key concepts here, and refer
the interested reader to [24] for details.

4.1 Automatic Signaling

In current programming languages/libraries conditional synchronization through mutexes requires program-
mers to explicitly associate conditional predicates with condition variables and call signal (signalAll) or
await statements manually. In contrast, ActiveMonitor framework manages conditional synchronization and
thread signaling, and relieves the programmer of their explicit handling. The programmer only needs to use
the waituntil clause. The idea of automatic signaling was initially explored by Hoare [22], but rejected in favor
of condition variables due to e�ciency considerations. Buhr et al. [4] claim that automatic monitors are 10
to 50 times slower than explicit signals. This is mainly due the sub-optimal implementation techniques that
result in excessive predicate evaluations for conditions and subsequent context switches. In [24], we provide
an e�cient mechanism that improves the automatic signaling performance tremendously.

We use three concepts that enable e�cient automatic signaling: closure of predicates, relay invariance,
and predicate tagging. The technique of closure of a predicate P is used to reduce the number of context
switches for its evaluation. In the current systems, only the thread that is waiting for the predicate P can
evaluate it. When the thread is signaled, it wakes up, acquires the lock to the monitor and then evaluates
the predicate P . If the predicate P is false, it goes back to waiting. This results in an additional context
switch. In our system, the thread that is in the monitor evaluates the condition for the waiting thread and
wakes it only if the condition is true. Since the predicate P may use variables local to the thread waiting on
it, ActiveMonitor derives a closure predicate P ′ of the predicate P , such that other threads can evaluate P ′.

The idea of relay invariance is used to avoid signalAll calls in ActiveMonitor. We ensure that if there is
any thread whose waiting condition is true, then there exists at least one thread whose waiting condition is
true and is signaled by the system. With this invariance, the signalAll call is unnecessary in our automatic-
signal mechanism. With relay invariance, the privilege to enter the monitor is transmitted from one thread
to another thread whose condition has become true. This mechanism guarantees progress, and reduces the
number of context switches by avoiding signalAll calls.

The idea of predicate tagging is used to accelerate the process of deciding which thread to signal. All
the waiting conditions are analyzed and tags are assigned to every predicate according to its semantics. To
decide which thread should be signaled, we identify tags that are most likely to be true after examining the
current state of the monitor. Then we only evaluate the predicates with those tags.

We extend these concepts to task based executions by allowing conditions within asynchronous tasks.
As de�ned in Defn. 1, each task has a boolean predicate P . This predicate captures the pre-condition for
the task's execution. Before executing any task, the server thread must verify that this condition is true.
If not, the task is not executable and the server does not execute it. The runtime handling of conditional
synchronization for OR/AND operators is described in � 5.
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4.2 Execution of Monitor Tasks

ActiveMonitor runtime library executes monitor tasks using the following rules.

Rule 1 (Mutex Invariant). If some thread t is executing a task m of monitor M , then no other thread can
execute any task m′ of M concurrently.

This rule maintains the mutual exclusion of critical sections of a monitor. We require two additional
rules to guarantee execution of tasks in program order. Let proc(t) denote the worker thread that submits
the task t to a monitor. Let sub(t) and exe(t) respectively indicate the timestamps when t is submitted to
the monitor, and when the server thread starts executing t.

Rule 2. For a pair of tasks s and t submitted to a monitor M , if proc(s) = proc(t), then
sub(s) < sub(t)⇒ exe(s) < exe(t).

This rule ensures that a server (monitor thread) executes every worker's tasks in the program order of
worker.

Rule 3. Let m1, m2 be two successive method invocations by a worker thread on two di�erent monitors M1

and M2 in the user program, and let t1, t2 be their corresponding task submissions at runtime. Then, t1
must be completed before t2's submission.

This rule enforces the constraint on a thread's successive invocations of methods on di�erent monitor
objects. Blocking method invocations in between these two calls are acceptable.

The notions of method invocation and response used to de�ne linearizability [21] need a di�erent interpre-
tation under asynchronous executions. In short, invocation now corresponds to submission of the equivalent
task to monitor thread, and response corresponds to this task's completion. Observe that the legal sequential
history we get may not preserve the order of invocation of operations, but only the thread order. With this
interpretation, we can easily validate the following result.

Lemma 1. Rules 1, 2 and 3 guarantee executions equivalent to lock-based executions.

5 Compositionality: Multi-object Synchronization

Monitor tasks are compositional in nature. Suppose a monitor method declares n in the form of waituntil(Pi)
Si, where 1 ≤ i ≤ n, to enforce that the set of statements Si must be executed i� predicate Pi is true.
To execute this method, ActiveMonitor generates n tasks such that each task ti has a precondition Pi and
a corresponding set of statements Si. More importantly, with monitors allowed to be `active' as threads,
ActiveMonitor enables compositionality of blocking operations across di�erent monitor objects. Consider
two instances Q1 and Q2 of a blocking queue implementation, with dequeue method signature being deq().
As the queue is blocking, a call to deq() will block the calling thread if the queue is empty. Consider the
problem of dequeueing from either of these instances, and storing the returned item into a variable x. If
both queues are empty, then we should block until an item is available in either one. In ActiveMonitor,
the code is simply one statement: x = Q1.deq() OR x = Q2.deq(). Solving this problem using the traditional
mutex based blocking queue implementations is extremely di�cult [19]. An ad hoc solution is to use a global
lock and a lock-free/wait-free implementation of deq. But this solution does not scale because a global lock
inhibits parallelism. Even with transactional memory [19] the problem is not easy to solve. To the best of our
knowledge, no transactional memory implementation provides explicit wait/notify construct on individual
thread-safe objects to release the CPU. An implementation [39] to allow waiting in transactional memory
requires continuous loop based busy-waiting on conditions. Implementations such as [9] propose global lock
based solutions for waiting and thus curb parallelism. Not only ActiveMonitor's asynchronous execution
approach provides an elegant solution, but it also allows parallelism. Similarly, the AND operator allows
conjunction of operations across multiple monitor objects, such that these operations can be performed in
parallel.

6



5.1 Implementing AND & OR Operators in ActiveMonitor

For both of these operators, ActiveMonitor stipulates that the operands � monitor method calls � must be
on di�erent monitor objects. This is needed to guarantee program order under conditional synchronization
across monitors. The pre-processor raises a parsing error if this constraint is not met. If the constraint is
met, the pre-processor generates the equivalent task for each operand conjunct/disjunct clause, and stores
them as a collection within a container object that is directly mapped to the operator. Note that if there
are multiple statements with same operator usage, all of them are treated as independent, and a container
object is generated for each of them. The operand calls are then replaced by the submission of tasks to the
corresponding monitors.

The runtime library delegates the tasks to their respective target servers (monitor threads) for execution.
It also observes all the preconditions of these tasks and ensures that they are executed whenever these
conditions are met. For AND operator, the worker that called the operator is forced to wait for the completion
of all the tasks. This is achieved by forcing the worker to evaluate the future reference returned by each task
submission. Once all the futures have been evaluated, the result of the operator is stored in the designated
storage if needed. For example, consider the statement: Q1.enq(a) AND Q2.enq(b); where Q1 and Q2 are
two bounded-queues. Then the framework generates two tasks t1 and t2, and submits them to the server
threads of Q1 and Q2. It then registers the returned future references with the worker thread that called the
statement, and forces it to evaluate both the futures such that the worker remains blocked until both a and
b are enqueued in Q1 and Q2 respectively.

For statements with OR operator, the container object that holds the tasks � that are equivalent to the
constituent disjunct clauses of OR� also maintains an atomic �ag called taken. This �ag is initially set to
false. To execute the composition statement, the runtime �rst parks the calling worker thread, and submits
the tasks stored in the container object to their respective server (monitor). Recall that the relay invariance
of our automatic signaling ensures that whenever the pre-condition of some task of the OR is met, its server
thread is signaled. To guarantee that only one clause (equivalent task) of the OR statement is executed, the
server thread performs a compare-and-swap (CAS) operation on the taken �ag of the container object. If
and only if the server's CAS operation succeeds, ie. the value of the �ag was false and this server set it to
true, the server proceeds to execute the task submitted to it. Since only one thread can succeed in atomically
setting the �ag, we are guaranteed that only one of the tasks will be executed. Every other server thread
that executes the CAS and fails can discard its task for the OR statement.

6 Implementation

We now describe implementation details that make ActiveMonitor practical in terms of use with real world
applications, as well as scalable and faster. Recall that unlike other delegation/combining implementations
[10,15,36], threads do not perform busy-wait in ActiveMonitor. To enable conditional wait and yielding the
CPU, our implementation uses a read/write lock for executing updates on each server thread. This ensures:
(a) reads do not return stale values, and (b) servers/workers can release the CPU and go into waiting
state whenever required as per runtime conditions. We employ a modi�ed version of combining [10, 15] for
executing critical section updates. When submitting a task to a monitor, a worker thread checks if the
server of the monitor is in waiting state. If so, the worker acquires the lock � becomes the combiner � and
executes a prede�ned number (�ve in our implementation) of tasks before releasing the lock. Observe that
the actual acquisitions of the write-lock are mostly uncontended under this approach. Uncontended lock
acquisitions are known to be relatively inexpensive, and thus threads does not incur signi�cant performance
penalty in doing so. For asynchronous tasks, we use a lightweight version of future objects that are shared
between only one worker thread and the server. Only the server can update the state of these objects.
Instead of using the default ones provided by the Java concurrent library [30], we create these objects using
only a few volatile variables. Instead of using the default wait/notify mechanism provided by Java, we use
the lower level API of park and unpark [30] for threads. Using the lower level API allows a more �ne-grained
control on execution of these threads.
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6.1 Storage of Tasks: Single Consumer Optimal Bounded Queue

Although asynchronous executions generally bene�t the application performance, a large number of asyn-
chronous tasks in the system lead to degraded performance due to higher number of cache misses. To
prevent this, ActiveMonitor maintains a bounded FIFO queue for each server in which the workers enqueue
their tasks. Given that ActiveMonitor instantiates only one server thread (if any) per monitor object, this
bounded-queue is a special case of the producer-consumer problem with only one consumer and multiple
producers. Only the server consumes the items (tasks) from this queue, and all the workers produce the
items. For this use-case, we developed an optimized algorithm for a thread-safe bounded FIFO queue that
minimizes the synchronization costs for the consumer.

Our BoundedQueue is backed by a linked-list: the items are stored in the nodes of the linked-list. Fig. 8
in Appendix C presents the pseudocode for put and take methods of our optimized algorithm. Only insertions
in the queue (through the put method in Fig. 8) require guarded execution under a lock to ensure correctness
while multiple threads concurrently attempt to insert items. Only a single thread performs removal of items
(through the take method), and thus we do not require a lock to protect concurrent removals. However,
maintaining the correct count of actual number of items in the queue is essential. This is done using the
atomic integer count. We adopt a `stealing' strategy in which the consumer locally caches the number of
available items, using the takeCount variable, in a look-ahead manner and reads and updates the atomic
integer count only when needed. Hence, the number of upadates to the atomic integer count is kept low,
which in turn reduces the cache-coherence tra�c, and improves the throughput and scalability.

Whenever there is no task (in its bounded-queue) for the server to execute, it is forced to go into wait.
The server performs this wait outside the queue using a condition variable that it owns. The automatic
signaling mechanism of the runtime library ensures that it is signaled and wakes up from the wait if a new
executable task is enqueued in the queue. Fig. 9 in Appendix C shows the throughput comparison of our
implementation with two other queue implementations from Java's util.concurrent package.

6.2 Monitor Thread Management

If we spawn a new thread for every monitor object, the performance of programs with relatively large number
of monitors could su�er. ActiveMonitor allows the programmer to manually control this number, as well as
itself controls the number of monitor threads based on the system hardware resources. The programmer can
indicate an upper bound on the number of monitor threads when starting the application. The ActiveMonitor
runtime library uses this limit in restricting the number of monitor threads spawned. If this limit is reached,
no other monitor threads are created, and invocations of asynchronous methods on remaining monitors (that
are not instantiated as threads) also follow the conventional synchronous (blocking) execution.

Irrespective of the user provided upper bound on server threads, the runtime library only instantiates
a thread for a monitor if there is su�cient hardware available. The runtime library monitors the system
environment information: CPU usage (for example from /proc/stat on Unix), and the size of wait-queues of
monitor objects, to decide whether or not monitors should be executing as threads. If the CPU usage is
high, our framework switches to traditional locking.

7 Evaluation

We implement monitor based solutions to multiple concurrency problems using ActiveMonitor, Reentrant-
Locks from JDK7, and combining [10] � that does not perform continuous busy-waits � by executing
ActiveMonitor in only synchronous mode. We evaluate the performance of these implementations on light
and heavy critical sections. Light critical sections do not involve much work within them, and favor tradi-
tional lock-based monitors as the overhead of maintaining additional information for delegated executions
outweighs their bene�ts. On the other hand, heavy critical sections provide increased opportunity for ex-
ploiting asynchrony and parallelism. Table 1 presents a summary of problems used for our evaluation.

All the experiments are conducted on a 40-core Intel Xeon machine that consists of four sockets of
Xeon E7-4850 10-core (20 hyper-threads), running at 2 GHz with 32 KB L1, 256 KB L2, and 24 MB LLC,
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Name Short Desc. CS Work [Type] Details

PSSSP
Parallel single-source-shortest-path using
Dijkstra's algorithm [8] using priority queue.

O(logn) [Heavy]
(a) USA road network graphs
(b) R-MAT Graphs [6]

BQ
Bounded FIFO queue of plain Java
objects.

O(1) [Light]
Capacity varied from 4 to 64; number of
enqueuers is equal to the number of dequeuers.

SLL
Linked-list of integers; entries are kept
sorted in non-decreasing order.

O(n) [Heavy]
(a) Read-heavy: 90% reads, 9% insert, 1% delete
(b) Write-heavy: 0% reads, 50% insert, 50% delete
(c) Mixed: 70% reads, 20% insert, 10% delete

RR Round-robin monitor access from [24]. O(1) [Light]
each thread accesses monitor in a prede�ned
round-robin manner based on thread-id.

Table 1: Short description of problems evaluated. Critical section (CS) is light/heavy if the total number of
operations performed inside it are small/large.

respectively. Compilation and execution both are performed with Oracle Java 1.7 (64-bit VM). Across
all results, we denote the implementations with the following notation: LK: implementation using Java's
ReentrantLock, AM: ActiveMonitor with asynchronous executions, and AMS: ActiveMonitor running with
only synchronous delegations.

For PSSSP problem, a thread-safe priority queue is used as an underlying data structure. ActiveMonitor
solution of this problem uses the monitor-based implementation of an unbounded blocking priority queue from
Java's concurrency package java.util.concurrent, and only modi�es it to make the put method asynchronous.
We evaluate the time taken to compute the shortest paths to all vertices from a randomly selected source
vertex. We use �ve large sized directed graphs. Two of these graphs, FLA and NY, are USA road-network
graphs of Florida, and New York obtained from [1], and the remaining three graphs, R16, R128, and R512
are generated using the GTGraph [3] generator suite. The details of number of vertices and edges in each of
these graphs is provided in Appendix D.

For all other problems we collect the throughput of operations over a 2 second period with varying
number of workers. For BQ problem, the items in queue are randomly generated strings, with enqueue
operation being asynchronous and dequeue being synchronous. For SLL problem, we pre-populated the
data structure with 1000 entries to simulate steady state behavior. For all the operations, the operand
values are chosen uniformly at random between 0 and 2000. This guarantees that on average, half of the
operations are successful and the structure size does not grow too large. Insertions and deletions in the list are
asynchronous and searches are synchronous. For RR, all accesses to the critical section are synchronous. BQ
and RR problems require threads to perform conditional waiting. For these two problems, we also compare
the performance of ActiveMonitor with that of Queue Delegation Locking [26], denoted by QD notation, by
adding conditional waiting to QD. The purpose of this comparison is to establish that our approach of using
automatic signaling with asynchronous executions can out-perform QD's approach of asynchronous delegation
under lock-unavailability. In addition, we also compute throughput of performing OR implementations. For
logical-or operations, we also tried to evaluate the performance of a transactional memory implementation [2]
but this implementation resulted in runtime errors and could not execute the statements.

We perform multiple warm-up runs to negate just-in-time compilation related performance variations. In
addition, all threads perform a �xed number of warm-up operations before starting the time measurements.
For all the experiments, we collect runtimes for 7 runs, and report the mean value of 5 runs after discarding
the highest and lowest values.

7.1 Results

Fig. 3 plots the throughput of the three PSSSP implementations in edges traversed per unit time format.
Given that the three synthetic R-MAT [6] generated graphs are relatively dense in comparison to the road
network graphs NY and FLA, the throughput values for all the implementations are higher for these graphs.
AM outperforms both of LK and AMS. Speci�cally, on R512 graph � one with the highest density � AM

is much faster than the other two. Given that the same implementation of priority queue is used as the
underlying data structure for all three implementations, and the only di�erence is in terms of asynchronous
inserts, these results validate our claim that AM approach is much more bene�cial for heavy critical sections.
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Fig. 4 plots throughput of operations for di�erent capacities of bounded queues for three implementation
techniques. For smaller bu�er sizes, in the range of 4 to 16 AM signi�cantly outperforms LK implementation.
This result highlights the bene�ts of asynchronous executions because LK is much slower in comparison to
AM, as well as AMS due to high contention on locks. For larger capacities of 32 and 64, LK implementations
perform better than AM because the availability of su�cient storage space allows worker threads to repeatedly
acquire critical sections without being blocked out, and LK bene�ts from Java's policy of non-fairness in lock
acquisitions. In contrast, AM and AMS provide almost `fair' executions for workers. However, in doing so,
they end up performing more work in these cases where blocking due to unavailability of space occurs rarely.
To analyze the performance bene�t of asynchronous delegation, we drop the program order constraint and
conduct the same experiment. Fig. 7 in Appendix B shows the results of these experiments with out-of-
program order executions showed with legend NPO. In the new setting, AM performance further improves,
and outperforms LK even on capacity of 32. These results highlight that when asynchronous executions are
allowed to be out of program order, the overall throughput of the program can improve signi�cantly.
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Figure 3: Throughput for PSSSP using priority queue (x-axis shows the number of threads)

0

80

160

240

320

400

0 20 40 60 80

T
h
ro
u
g
h
p
u
t
(K

o
p
s/
s)

Capacity = 4

0

100

200

300

400

500

0 20 40 60 80

Capacity = 8

0

160

320

480

640

800

0 20 40 60 80

Capacity = 16

0

280

560

840

1120

1400

0 20 40 60 80

Capacity = 32

0

500

1000

1500

2000

2500

0 20 40 60 80

Capacity = 64
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Fig. 5 shows the operations throughput for the SLL and RR, and OR composition problems. In all runs
on these problems, (AM) clearly and signi�cantly outperforms the read-write reentrant lock based monitor
(LK), as well as delegation technique of AMS. Note that RR problem does not involve any asynchronous
operation, and thus AM and AMS runs are exactly the same. Given that the critical section involved in
SLL problem is heavy, the performance gap highlights the bene�ts of asynchronous monitors for such cases.
Surprisingly, AM (as well as AMS) is ∼ 3 − 4× faster than LK on RR problem too. This is because the RR
problem setup simulates a critical section in similar to that of BQ problem with capacity one. Hence, LK
implementation spends a lot of its execution time in waiting for lock acquisitions, whereas AM and AMS

bene�t from lower contention.
On all the problems with conditional waits, AM signi�cantly outperforms QD in terms of throughput.

Hence, extending QD to incorporate conditional waiting is not su�cient to match our approach. Our tech-
niques for e�cient conditional synchronization with automatic signaling provide signi�cant bene�ts in com-
parison to QD.

8 Related Work

Our idea of having monitor objects execute as independent threads is in�uenced by Hoare's proposed com-
municating sequential processes (CSP) [23] mechanism in which all objects are active, of long ago. However,
CSP does not have the notion of shared memory, and every object is a process. In contrast, our focus is
solely on shared memory parallel programs on multi-core machines.

We use futures [12, 30] to realize the idea of non-blocking/asynchronous executions. Kogan et al. [27]
explore a similar approach in making use of futures for non-blocking executions. However, we explore changes
to the general paradigm of monitors, whereas [27] only focuses on three data structures: stacks, queues,
and linked-lists, none of them requiring conditional waiting. In addition, [27] uses data structure speci�c
local elimination/combining, and allows read/fetch operations on these data structures to be asynchronous
whereas we do not � our assumption being that in almost all the cases, a programmer needs the result of
read/fetch immediately so that she can use it in the subsequent program logic. Hence, our approach spans a
more generic level of monitors, and does not rely on knowledge of internal functionality of critical section it
protects. Some theoretical results that establish the bounds on improvements in cache locality by the use
of futures have been established in [17]. These results are not directly related to monitor based executions,
but lead the direction in terms of use of futures for improving the performance of multi-threaded programs.

Existing implementations of the combining technique [10,15,36] perform busy waits for task completions
and do not yield the CPU; additionally they also do not provide any mechanisms for conditional waits � these
issues together make them more or less impractical for use in real world applications. Remote Core Locking
(RCL) [31] addresses such issues by allowing conditional waits, and uses a dedicated core for executing
critical section, but does not incorporate asynchronous executions. Recently, works such as [5, 37] have
performed extensive experimental analysis in identifying the performance gains/losses with asynchronous
message-passing like executions over synchronous shared memory ones. [37] provides various insights for
e�ective implementations that perform well using hardware message passing support on shared memory
machines. This work minimizes the remote-memory-references (RMRs) during executions, and quanti�es
the performance gains for asynchronous executions, but assumes that the method data �ts in a single cache-
line. In addition, it does not consider the conditional wait based monitor implementations. Similarly, [5]
studies the pros and cons of message passing based executions on performance of shared memory parallel
programs. This work highlights that di�erent approaches perform best under di�erent circumstances, and
that the communication overhead of message passing can often outweigh its bene�ts, and discusses ways
in which this balance may shift in the future. Queue Delegation Locking (QDL) [26], uses the approach
of combining to provide a locking library implementation in C++. However, QDL does not provide a
mechanism for synchronization between threads, and waiting, based on conditions.

Transactional memory [18, 38] is a well-known research e�ort that proposes modi�ed syntax for ease of
writing multi-threaded programs. However, constructs for conditional waiting under transactional memory
are limited [9, 32, 39]. Hence, writing many conditional synchronization based multi-threaded programs is
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rather di�cult. Also, unlike transactional memory, our approach merely transfers the responsibility of data
manipulation to monitor threads and does not require any complicated rollback mechanism for resolving
con�icting updates on the shared data. x10 [7] programming language focuses on providing features that
have an overlap with both transactional memory and our work. However, there are signi�cant di�erences in
the support and usage of these constructs. The support for conditional waiting is present syntactically, but
as stated in [7] is deprecated for runtime execution.

Lock-free algorithmic techniques using atomic hardware instructions such as compare-and-swap have
gained momentum for implementing scalable thread-safe data structures [11, 13, 16, 20, 28, 29, 33, 35, 40]. In
addition, [14,25] have explored alternate implementation techniques that combine/eliminate complementary
operations for increasing parallelism in data structures. However, the di�culty involved in designing lock-
free/wait-free algorithms, and operation eliminating data structures is well known. At present, it is not clear
how lock-free techniques can be used to implement critical sections that involve many operations spanning
across multiple shared objects. The absence of any wait-notify mechanism in lock-free techniques is another
hurdle for their use in many real world programs.

9 Discussion & Conclusion

Despite providing programming ease and performance bene�ts, our framework's current implementation has
some limitations. We discuss them below.
Thread Dependent Variables and Functions: In our current implementation, thread dependent vari-
ables and functions within a monitor method cannot be used directly in the Runnable or Callable object that is
used in task generation by our approach. This is because the tasks are executed by the monitor thread and not
by the worker thread. For example, suppose there is a monitor method that invokes Thread.currentThread(), if
we directly add this statement to the generated Runnable object (in the task), then this method's invocation
at runtime will return the reference to the monitor thread when it is executed. However, it is obvious that
the intent of this call inside the monitor method was to refer to the worker thread. To handle this situation,
currently, we require the programmer to perform reference copy and storage and storage in thread-local
variables. For read operations of thread dependent variables and functions, the worker thread would need
to evaluate them outside the monitor, and store the result with �nal variables. These �nal variables can be
accessed by the runnable and callable objects. An additional constraint/limitation applies for the case of
write operation on thread dependent variables. For write operations, if the monitor method is non-blocking
then the results can be stored as intermediate data. The worker thread then writes these results back to its
local variable after the task is executed.

Concluding Remarks: We have shown that our proposed scheme of asynchronous executions in monitors
provides signi�cant improvement over traditional lock-based monitors. At present, writing parallel programs
that provide high throughput and scalability is an arduous task for most programmers. The main challenge is
a lack of simple programming language constructs that guarantee thread-safety while exploiting parallelism
of executions and availability of hardware in a seamless and portable manner. Our proposed design of
asynchronous monitors is a step in the direction of providing such constructs. The current version of our
implementation consumes some additional processing resources. However, we believe that with further
research e�orts in this direction, and further optimizations in our implementation, our proposed technique
can lead to signi�cant improvements in programmability as well as performance of shared memory parallel
programs.
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Appendices

A Comparison: Bounded-Queue Implementations

(a) Conventional Java Implementation

1 class BoundedQueue<T> {
2 T[] items;
3 int putPtr, takePtr, count, size;
4 BoundedQueue(int size) {
5 this.size = size;
6 items = new Object[size];
7 }
8 synchronized void put(T item) {
9 while (count == size)

10 wait();
11 items [putPtr++] = item;
12 putPtr = putPtr % size;
13 ++count;
14 notify();
15 }
16 synchronized T take() {
17 while (count == 0)
18 wait();
19 T x = (T)(items [takePtr++]);
20 takePtr = takePtr % size;
21 --count;
22 notify();
23 return x;
24 }
25 }

(b) ActiveMonitor Implementation

1 monitor class BoundedQueue<T> {
2 T[] items;
3 int putPtr, takePtr, count, size;
4 BoundedQueue(int size) {
5 this.size = size;
6 items = new Object[size];
7 }
8 aysnchronous void put(T item) {
9 waituntil(count < size);

10 items [putPtr++] = item;
11 putPtr = putPtr % size;
12 ++count;
13 }
14 T take() {
15 waituntil(count > 0);
16 T x = (T)(items [takePtr++]);
17 takePtr = takePtr % size;
18 --count;
19 return x;
20 }
21 }

Figure 6: Bounded-Queue programs written using (a) Java's synchronized keyword and (b) ActiveMonitor
keywords.

B Out of Program Order Asynchronous Executions

Observe that Rule 3 forces a worker thread to wait for the previous task to �nish even if that task was on a
di�erent monitor object. In many applications, a programmer may not require this constraint on di�erent
monitor objects. Hence, to improve performance, we can drop Rule 3 for such applications. We show that
the execution is still linearizable with the new interpretation of invocation and response.

In the standard model of concurrent history [21], the thread history is always sequential although the
object history may not be sequential. In our model, due to asynchronous executions, we have the dual
property: an object history is always sequential whereas a thread history may not be so. We �rst de�ne the
thread order in presence of asynchronous operations.

De�nition 2 (Execution Order with Asynchrony). Let i1, i2,..., im be m method invocations performed by a
worker thread on a monitor object, and let s1, s2, ..., sm be the corresponding tasks that are submitted to the
monitor thread. We write si < sj to denote that si was completed before sj's execution was started. In the
standard model, all operations are synchronous (blocking) and we get that si < si+1 for all i. In our model,
we de�ne the order as follows. If si is synchronous, then si < sj for all j > i. If si (ii's invocation to be
precise) is asynchronous and the result of si is required before submitting sk, then si < sj for all j ≥ k.
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Observe that this de�nition does not impose any order between si and sj , i ≤ j, when si is asynchronous
and its result must be collected before sj 's submission. Hence, under the asynchronous execution model,
there are no guarantees on order of executions when asynchronous operations are involved unless there is
direct or indirect dependency due to the asynchronous invocations's result being passed on as argument to
one of the following invocations.

The monitor, whenever spawned as a thread, is responsible for executing the tasks that correspond the
method invocations on it by the worker threads. The Monitor thread, however, must adhere to a set of
rules to ensure correctness. Thus, Rule 1 maintains the mutual exclusion of critical sections of a monitor.
However, for correctness of executions, we require additional rules.

Rule 4. For any pair of tasks s and t, their execution is performed in a real time order that is consistent
with the order de�ned in Defn. 2.

We show that under our model executions are still linearizable with the new interpretation of invocation
and response under the order given by Defn. 2.

Lemma 2. With Rules 1 and 4, we get an execution that is linearizable.

Proof. Consider an execution history H. If during the execution, no monitor object is instantiated as a
thread, then executions in H must follow the standard model [21], and hence H is obviously linearizable.

On the other hand, by Rule 1 any task submitted to monitor m cannot be executed by two or more
threads concurrently. Hence, execution order of all the tasks of m is equivalent to some single threaded
execution. Moreover, by Rule 4 this execution order must be consistent with the real time order de�ned by
Defn. 2. A real time order of execution is linearizable. Hence, for every monitor m, H|m is linearizable. By
composability property provided by linearizablility, H must be linearizable.

In Fig. 7 the plot curve with legend NPO shows the throughput for BQ experiment under out-of-order
asynchronous executions.
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Figure 7: Throughput for Bounded FIFO Queue (x-axis shows the number of threads)

C Algorithm and Performance of our Bounded-Queue

The pseudocode for put and take methods of our bounded-queue is shown in Figure 8.
We empirically found the capacity of 200 to work best for our implementation. We compared the per-

formance of this implementation (denoted by AM) against that of two other thread-safe concurrent FIFO
queues from Java's concurrency package: LinkedBlockingQueue (LBQ), and ConcurrentLinkedQueue (CLQ).
CLQ is an implementation of the lock-free queue algorithm by Michael and Scott [34]. Figure 9 compares the
saturation throughputs of these implementations when multiple producers insert randomly generated strings
in the queue, and a single consumer removes them. It is evident that our algorithm signi�cantly outperforms
the other three techniques for the single-consumer-multiple-producer use case.
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put, take methods of our BoundedQueue

1 count: an atomic integer
2 capacity: integer // capacity of the bounded queue
3 putlock: mutexes for put operations
4 takeCount: integer // stores value of items that
5 // can be taken without locking
6 notFull: condition variable
7

8 // items are stored in a linked-list
9

10 void put(T e) {
11 node = new Node<T>(e)
12 putlock.lock() // lock guarded
13 while (count.get() == capacity) notFull.await()
14 enqueue(node) // linked-list add tail
15 lcount = count.getAndIncrement()
16 if (lcount + 1 < capacity) notFull.signal()
17 putlock.unlock()
18 }
19

20 // Called only from take
21 void signalNotFull() {
22 putlock.lock()

23 notFull.signal()
24 putlock.unlock()
25 }
26

27 T take() {
28 if (takeCount > 0) {
29 takeCount--
30 return dequeue() // linked-list remove head
31 }
32

33 takeCount = count.get()
34 if (takeCount == 0) {
35 signalNotFull()
36 return null
37 }
38

39 T x = dequeue() // remove head from linked-list
40 lcount = count.getAndAdd(-takeCount)
41 if (lcount == takeCount) signalNotFull()
42 takeCount--
43 return x
44 }

Figure 8: BoundedQueue for single consumer and multiple producers.
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Figure 9: Throughput comparison of queue implementations (x-axis shows the number of threads)

D Details of Graphs used in Evaluation

Name Description # of Vertices # of Edges

FL Road network graph of Florida 1,070,376 2,712,798
NY Road network graph of New York 264,346 733,846
R16 Synthetic R-MAT graph. 5×104 1.6×106
R128 Synthetic R-MAT graph. 5×104 1.28×107
R512 Synthetic R-MAT graph. 5×104 5.12×107

Table 2: Short description of graphs and counts of vertices and edges.
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